oGPCR decision tree

Failed modeling or no actives

enabled GPCR?

High seq id to xtal-

Standard oGPCR (~85%)?

determine signaling, physically screen for lead matter

Build homology models to enrich lead matter from decoys

Large library docking, test ~40

actives?

Optimize oGPCR probe, with favorable PK, determine activity against mouse oGPCR; if favorable activity consider mouse testing

TASR, VNR, ADGRG, FZD families

- CRISPR/CLARITY to illuminate distribution and potential function
- Identify signaling via CRISPR-cells
- Consider
 DREADD
 depending on IRG working
 group

Flowchart: Med chem optimization oGPCRs

~40 obtained Validated by MS Tested in functional assays

Actives used to refine models and docking

Mutagenesis to verify docking pose

Progress:

- Potency 1 µM or better
- GPCR-ome profiling limited off-targets
- PDSP profiling limited off targets
- Preliminary SAR validated by re-synthesis

10-20 analogues to explore SAR

Analogues verified

Triage:

• SAR/potency plateau

No actives

Synthesis challenging

To Sigma Catalogue

- Active and inactive probe pair 100 nM potency or better
- Minimal off-target GPCR-ome activity
- Favorable PDSP off-target profile

UCSF

UNC

Mt. Sinai

PDSP

Options:

- CRISPR/CLARITY/DREADD
- Re-do physical and computational screens
- De-prioritize target

In vivo testing

- Favorable PK
- KO available
- Consider outside collaborators

CRISPR-Clarity-DREADD

UNC (Roth lab, Genetics and Pathology Cores

UCSF and KMC

IDG Working Group

TASR, VNR, ADGRG, FZD families and oGPCRs failed modeling

Targets prioritized by IDG Working Group

CRISPR knock-in design:

- Epitope tag (FLAG, HA) to minimize expression
- **IRES-Cre**

- Initial knock-in fails:
 Redesign targeting guide RNAs
 May iterate x 2 before de-prioritization of target

Targeting achieved

- F1 obtained (UNC Genetics Core)
- Bred to reporter line (Roth lab)
- Survey of tissue distribution (Roth Lab + UNC pathology core)

Input from IDG-WG

- Which targets to prioritize for survey vs in-depth interrogation
- DREADD go/no-go Further anatomical and functional characterization:
- Whole body, single-cell resolution via iDISCO/CLARITY (UNC-Cal Tech collaborators)
- Deposition of images (UCSF/KMC)
- DREADD-based activation of signaling to elucidate physiology
- Videos of physiology deposited (UCSF/KMC)